
NASA CONTRACTOR REPORT 177464

% %

Multitasking and Microtasking Experience on the NAS Cray-2
and ACF Cray-XMP

(bASA-C3- 1774164) f l U L 2 I T A S K I E G A b D
EICBUTASKIdG E P E E E I E L C E C I I t € N A S C R A Y - 2

.

Farhad Raiszadeh
Sterling Software
Numerical Aerodynamic Simulation (NAS) Systems Division
NASA Ames Research Center, Mail Stop 258-5
Moffett Field, CA 94035
Tel: (415)-694-4322

Prepared for
Allies Research Center
llnder Contract NAS2-11555

NASA

188- 17325

National Aeronautics and
Space Administration

. .
I *

NASA CONTRACTOR REPORT 177464

b e

Rlult,it.asking and Microt.asking Experience on the NAS Cray-2
and ACF Cra,y-XMP

Farhad Rnisza.deh

CONTRACT N A S Z 11555
June 1987

MULTITASKING AND MICROTASKING EXPERIENCE ON THE NAS
CRAY-2 AND ACF CRAY-XMP

Farhad Raiszadeh
Sterling Software

Numerical Aerodynamic Simulation (NAS) Systems Division
NASA Ames Research Center, Mail Stop 258-5

Moffett, Field, CA 94035
Tel: (415)494-4322

ABSTRACT

The fast Fourier transform (FFT) kernel of the NAS benchmark program has been uti-
lized to experiment with the multitasking library on the Cray-2 and Cray X-MP/48, and
microtasking directives on the Cray X-MP. Some performance figures are shown, and the
state of multitasking and microtasking software is described.

INTRODUCTION

Most programs on Cray supercomputers are executed on one CPU. However, Cray
supercomputers that have been installed at NASA Ames Research Center have four cen-
tral processing units (CPU's). They include a Cray-2 at NAS and a Cray X-MP at the
Advanced Computational Facility (ACF). To utilize the full potential of these supercom-
puters, programs can be executed simultaneously on these four processors. To achieve this
improved performance for a single program, Cray Research Inc. (CRI) has developed some
utilities for Fortran programmers. They are called multitasking and microtasking.

Multitasking is a mode of execution in a multiprocessor computer that provides for
executing two or more parts of a single program in parallel. It uses feature routine calls
from the Cray multitasking library. To achieve an efficiently multitasked program, the
multitasked modules should have a large granularity (task size). Multitasking can be ac-

complished efficiently at any level of the program, as long as the overhead for the library
calls does not, overwhelm the gains from multitasking, and the data dependencies in differ-
ent processors do not handicap the execution.

CRI offers another parallel processing approach for Cray X-MP called microtasking
that permits multiple processors t>o work on a Fortran prograin at the DO-loop level.

1

Microtasking is not currently supported on Cray-2. It uses compiler directives rather than
feature routine library calls, and can be implemented on modules with smaller granularity.
In a microtasked code, synchronization overhead is very small, and tasks can be much
smaller.

Following is an overview of different modes of parallel processing, and the highlights of
their benefits and weaknesses.

PARALLEL PROCESSING

Normal Fortran programs on Cray machines are set up logically to run on a single pro-
cessor. Programs that run on a single processor execute with considerable speed; however,
in a four processor system, an even greater speed (approaching to four times faster) can
be achieved if a single program utilizes all four processors concurrently.

Parallel processing can harness the power of all four processors for the execution of
a single job. Utilization of parallel processing is not possible for all applications. Some
programs and algorithms can make a reasonable use of parallel processing, while others do
not lend themselves to this mode of execution. Before a user embarks on using parallel
processing capabilities such as multitasking or microtasking, he should look at all other
possibilities for improving the performance of his code. Most so-called dusty decks are not
good candidates for parallel processing unless an attempt is made to optimize and vectorize
the code before other improvements for parallel processing are implemented.

C'onversion of a program to multitasking is usually a major programming task. In most.
cases a comprehensive study of the data dependencies between different. modules of the
entire program may be necessary. Since each task that is generated in a multitasking mode
has an independent control sequence within the program, memory for variables can be
allocated in two different modes. The memory can either be local to one task or it may be
global to all tasks. In most programs a systematic analysis of the data dependencies and
t,he flow of data between different tasks reveals that a program needs Iocal memory as well
as global memory. With the current compiler only global memory is available on the Cray-
2, and the local memory for each task, which is dubbed TASK COMMON, is not available
on t,he Cray-2. This handicaps multitasking capability. When local data are necessary
for multitasking on the Cray-2, multiple definition of data for each task can resolve this
shortcoming. However, this can be cumbersome, and in some cases it makes multitasking
impossible to implement.

The order in which the statements are executed in programs run on only one CPU
is well defined. Repetitive runs produce identical results because t,he same instructions
are executed in the same order each time. Data and control dependencies are satisfied

2

simply by the location of statements in the program. Temporal ordering is implied by
spatial ordering. Parallel processing introduces a new dimension to the order of execution.
While the sequence of execution in each task remains well defined, the relative order of
task execution has no default order. In fact, the order of execution may change from run
to run, and the programmer must control the ordering to satisfy dependencies. Failure to
manage the temporal ordering of tasks is a subtle error that may be difficult to identify.
While there is no guarantee that more than one processor will be allocated to work on the
tasks of a given job, there is also no guarantee of which of the parallel tasks will finish first.
Multitasking is nondeterministzc with respect to time but software processes must usually
be made deterministic with respect to results. Communication between parallel tasks and
protection of shared data must be taken care of by the programmer. If some data froin
one part of the program is needed to execute another part, they can not run concurrently.
Parallel processing is possible only when the concurrent parts of the program can execute
independently. To clarify these subtle rules, some typical classes of codes executed on the
Cray-2 are described in the following paragraph.

Computation of fluid flows by finite difference techniques has traditionally been ac-
complished with a system of grid points. Recently, multiple grids have become popular
with some researchers in the field. A multiple grid code with overlapping, or patched grid
systems is a prime candidate for multitasking, because each patch of the grid can be solved
by one processor, and at the end of each iteration the boundaries of different grids can be
updated. This class of problems furnishes a high granularity for each task, and can uti-
lize multitasking in an efficient manner. In contrast to overlapping or patched grid codes,
composite grid codes with two systems of coarse and fine grids can not be multitasked in
this level because the solution of the two grid systems are interdependent. Multitasking of
this class of codes should be accomplished in a lower level with a smaller granularity. In a
single grid problem, if a factorization scheme is used, different dimensions can be resolved
concurrently. However in an implicit scheme the benefits of multitasking are limited by
data dependency between different parts of the program, and the small granularity of the
parts that are independent. In problems where each step is dependent upon the previous
step, and individual steps are not time intensive, the multitasking library does not speedup
the execution, and the only alternative for parallel processing is microtasking because it
has smaller granularity. However, microtasking is not currently available on the Cray-2.

The main advantage of microtasking is its low overhead and ease of implenientation. It
works better when the task size is small. For example, it can be utilized in the DO-loop
level, where the overhead for feature routine calls of the multitasking library would be
inefficient. Another advantage of microtasking is that when dedicated (stand-alone) time
is not available, the microtasked job can dynamically adjust to the number of processors
that become available for short periods from time to time.

Following is a brief review of multitasking and microtasking of one of the test kernels

3

Table 1: Timings for FFT NAS Kernel on Cray-2 and Cray X-MP

1 Cray-2 Cray X-MP Cray-2 CPU
Execut,ion Mode I Total C!PU Total CPU Multitasked section

Cray X-MP CPU 1
Multitasked section ,

Uni-tasked 1 18.01 sec
Multitasking i 17.55 sec

Speedup Factor 1 1.03

(CFFTZD), which is a part of the NAS Kernel Benchmark program.

23.55 sec 1.12 sec 0.997 sec I

21.97 sec 0.28 sec 0.361 sec
1.07 4. 2.76

I

UTILIZING THE MULTITASKING LIBRARY

The fast Fourier transform kernel of the NAS Benchmark program was multitasked as
a test of the multitasking library. Multitasking library consists of a set of feature routine
calls that control the execution of the code and the flow of data between different tasks. To
test the robustness of the multitasking library, the multitasked program was executed on
the Cray-2 and Cray X-MP. There was no attempt to achieve maximum possible parallel
processing. In fact, this exercise was a feasibility run to verify that the libraries work.

This FFT routine is not the best possible candidate for multitasking, because in each
iteration there exists some data dependency with respect to previous computations. Con-
sequently, the multitasking could not be accomplished in the highest level of the subroutine
calls. In fact multitasking was only utilized in the most computationally intensive DO-
loop. The number of library calls to TSKSTART and other multitasking routines were pro-
portionate to the number of iterations. However, this test demonstrated that the Fortran
programmer can obtain benefits from multitasking if his algorithm and data structure are
suited to parallel processing. This exercise also demonstrated the effort necessary to utilize
multitasking library on both Cray-2 and Cray X-MP. The amount of man-hours necessary
for the multitasking of a code is highly dependent on the experience of the programmer.
For an experienced analyst who is novice in the usage of multitasking, approximately forty
hours of work is necessary to convert a code like the NAS benchmark FFT kernel to a
multitasked version. This does not include the time necessary for the initial familiarization
with the library.

Table (1) shows the overall run time and run time for the multitasked portion of the
program on the Cray-2 and Cray X-MP. Total C'PU time is defined as the execution time

4

I

based on the wall clock in a batch mode. These times are presented for the Cray-2 and
Cray X-MP, with and without multitasking. These values are not exact and may vary
up to ten percent for each run due to memory bank conflicts and swapping, but usually
it varies only a few percentage points. Multitasked section CPU time is the time spent
on the DO-loop that was multitasked. This CPU time does not include the overhead for
the library calls; i t is the CPU time spent inside the DO-loop. This table also shows
the improvement that was achieved by parallel processing. As displayed in the table, the
speedup for the multitasked portion of the program is four times for the Cray-2 and 2.76
times for C'ray X-MP. This speedup is only for the multitasked portion of the program,
and the overall speedup is much lower, because only a small portion of the program was
multitasked. In fact, the serial portions that could not be multitasked used most of the
execution time, as is reflected in the performance table.

The overhead for multitasking libraries was rather large in this example, because of the
small granularity of the multitasked section of the code. However, the overall run time
was reduced, but not to the extent that one would expect from a four processor system.
Another detriment to the improvement was that only some parts of the program could
be multitasked, and to the extent that the program runs with one processor, i t could not
benefit from multitasking.

Multitasking is not applicable to inherently sequential algorithms, and a systematic
study of the code is necessary before any attempt is made to multitask a code. Also before
a user embarks on multitasking, he should try to optimize and vectorize his code. These test
runs demonstrated that the multitasking library is an important tool for parallel processing
of the Fortran codes on both the Gay-2 and C'ray X-MP. However, some enhancements to
the library calls are greatly needed before we can expect general acceptance of multitasking
by the users. Of special interest is inclusion of TASK COMMON in the (hay-2 version of the
multitasking library. With such enhancements it is expected that multitasking will get a
wider acceptance by the users.

MICROTASKING

Microtasking permits multiple processors to work on a Fortran program at the DO-loop
level or in the subroutine level. Microtasking has a very low overhead; and if it is used
at the DO-loop level, the user does not, need to be concerned with the synchronization
analysis. Microtasking can be a very handy tool, because it usually does not require the
ext,ensive data dependency analysis that one would be expected to address in a mult,itask-
ing job. Microtasking consists of some compiler directives that invokes parallel processing
of t,he microtasked code. The absence of library calls reduces t,he overhead for microtasking
significantly. Hence, microt>asking can be utilized for parallel processing of code sections

5

with smaller granularity than the feature call multitasking library. This usually reduces the
scope of data dependency analysis that has t.0 be addressed in microtasked code. There-
fore, microtasking can usually be accomplished with much less effort than mult,itasking
library calls. In fact the microtasking of the fast Fourier transform kernel of the NAS
benchmark program was microtasked with about eight man-hours of effort by an analyst
with lixnit,ed experience in microtasking. This is significantly less than the necessary effort.
for multitasking of the same code.

Currently, microtasking is not supported by Cray-2 and it is only available on C h y
X-MP. However, it does not run on X-MP under the current operating system (COS 1.14).
In fact, the simplest microtasking job crashes the system. As a test of microt.asking, the
FFT code t.hat ran with one processor was chosen for microtasking. One of the simplest.
microtasking jobs is a microtasked DO-loop. Here the modifications consisted of initiation
of multiple CPU’s, a directive for the beginning of the microtasked subroutine, and a single
microtasked DO-loop. These modifications are as follows:

CMIC$ GETCPUS 4 ! to initiate the four CPU’s
CMIC$ MICRO
CMIC$ DO GLOBAL

! to begin the subroutine with microtasked code
! the microtasked Do-loop

This is the simplest possible microtasking job that one may execute on Cray X-MP.
But even this job crashes the system. This experience demonstrates that the microtasking
directives need much improvement.

At this time only a handful of users have attempted to utilize microtasking on ACF’s
Cray X-MP. After consultation with these users, it is clear that the robustness of micro-
tasking is questmionable. It is expected that COS 1.16 will be installed on the Cray X-MP
in the Spring of 1987. NASA Ames will be a beta test site for this version. According to
John Avila microtasking has worked with COS 1.16 at the Chevron facility in Los Angeles.
When the new operating system is installed on Cray X-MP, the microtasked FFT code
will be used as an acid test for the new version of the operating system.

CONCLUSION

Multitasking and microtasking software are important tools for parallel processing.
Currently, the multitasking library is supported on both Cray-2 and Cray X-MP. These
library calls are not user friendly; but if the code lends itself to mult,it,asking, a high degree of
parallel processing can be achieved when t.he rules on data dependency and load balancing

6

are followed. If the benefits of parallel processing are to be realized, some enhancements to
the multitasking library are necessary. One of the more pressing needs is TASK COMMON,
which is not yet available on Cray-2. This is especially beneficial for the large codes that
have many different data structures.

Microtasking is easy to implement, and has a very low overhead. However, it has not,
been a very reliable piece of software; furthermore, it is not supported on the Cray-2. NAS
should begin talking to CRI to accelerate development of reliable microtasking software
on the Cray-2. Once microtasking becomes a reliable utility, users will most likely prefer
it, to the multitasking library. CFD researchers may not want to spend weeks analyzing
and modifying their program with multitasking library calls. But microtasking can be
utilized in a timely and convenient inanner that should be appealing to a user. Finally,
microtasking can be utilized with less effort, and with a low overhead for most programs,
while multitasking is not as yet applicable to many algorithms.

7

I Report No.

CR 177464

7. Authot(s1

Farhad Raiszadeh

2. Gomnmmt Accrrrion No. 3 R ~ ~ p ~ m t f Guiog No

9 hrformsng Orgm.zetom NJITK and Mdrcu

Sterling Federal Systems, Inc.
1121 san Antonio mad
Palo Alto, CA 94303

4 TIIIC .nd sumltie

Multitasking & Microtasking Experience on the NAS
Cray-2 and ACF Cray-XMP

12. Spoornuring Agency Name and Address

~a t iona l Aeronautics & Space Mministration
Washg-ton, D.C. 20546

5. Report Date

6. PwfwmmJ Chwnizarion codc
, July 1987

10. Work Unit No.

K 1707
11. Contract or Grant No.

W2-11555

Unclassified

13. T y p Of Rmn M d Pniod cC.med

Contractor Report
14. Sponsoring Awncy Code

unclassified 9

15 Supptcnentrrb Notes

Point of Contact: Robert A. Carlson, 1.E: 233-15, NAsA/Ames Research Center
Fbffett Field, CA 94035
(415) 694- (FTS464) 6036

!G i;lrllacl

The fast. Fourier t>ransform (FFT) kernel of the NAS benchmark program has been uti-
lized to experiment with the multitasking library on the Cray-2 and Cray X-MP/48, and
microtasking directives on the C!ray X-MP. Some performance figures are shown, and the
s ta te of riiultit.asking and microtasking software is described.

17 Key Words (Suggesttd by AuthorW)

Fast Fourier Transform (FIT)
multitasking library
ficmtasking directives

1 E Distribdtion Sutcmcnl

Unclassified, Unlimited
STAR Catesory - 61

19 S e v i t y Ouif I d this report) I 10. Security Classif lo(this plgl I 21. No of Pages I 22. Rice'

